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1 IMU Sensor Modelling and Kinematics
This document covers the basic IMU sensor model often used in robotics literature, which appears
in many problems including visual-inertial, lidar-inertial, or radar-inertial navigation. The purpose
of this document is to summarize

• The IMU kinematic model in both discrete-time and continuous-time,

• The Jacobians of the IMU process model in both discrete and continuous-time. These are
useful for performing filtering with an IMU with the EKF, for example. The Jacobians are
also important for performing observability analyses for inertial navigation problems.

To showcase the typical IMU sensor model, two frames are introduced - the inertial frame Fa and
the frame that rotates with the IMU, Fb. An unforced particle in Fa is denoted w and a reference
position on the IMU is denoted point z. The direction cosine matrix (DCM) that relates the attitude
of Fa to the attitude of Fb is denoted Cab ∈ SO(3). The DCM relates physical vectors resolved in
Fa to physical vectors resolved in Fb as va = Cabvb. The IMU position and velocity resolved in
the inertial frame are denoted rzwa and vzw/aa , respectively.

1.1 IMU Sensor Modelling
This document focuses on a basic IMU sensor model that adds bias and noise to the true angular
velocity and acceleration of the vehicle. The rate gyroscope measures

ugb (t) = ωbab (t) + bgb (t) + wg
b (t) , (1)

where ωbab is the true angular velocity of the platform, bgb is the additive gyro bias resolved in the
body frame, and wg

b is white noise of the form wg
b ∼ N (0,Qg

cδ(t− τ)), where Qg
c is the power

spectral density of the noise. Additionally, the gyro bias is modelled as a random walk ḃgb = wbg
b ,

where wbg
b ∼ N

(
0,Qbg

c δ (t− τ)
)

. The accelerometer measurements are modelled to be of the
form

ugb (t) = Cab (t)T
(
azw/a/aa (t) + ga

)
+ bab (t) + wa

b (t) , (2)

where azw/a/aa (t) is the true acceleration of the IMU resolved in the inertial frame Fa, and ga is the
gravity vector resolved inFa Additionally, here bab is the accelerometer bias which is also modelled
as a random walk, such that ḃab = wba

b , where wba
b ∼ N

(
0,Qba

c δ (t− τ)
)
.

1.2 Continuous-Time IMU Kinematics
The IMU navigation state consists of the IMU orientation, velocity, and position, written asX nav =(

Cab, v
zw/a
a , rzwa

)
. The time evolution of the IMU navigation state can be written in terms of the
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true angular velocity and acceleration of the platform, as

Ċab (t) = Cab (t)ωbab (t)× , (3)

v̇zw/aa (t) = Cab (t) azw/a/ab (t) + ga, (4)

ṙzwa (t) = vzw/aa (t) . (5)

where (·)× is the skew-symmetric operator, a mapping from R3 to so(3) such that a×b = −b×a,∀a,b ∈
R3. Subbing in the IMU measurements rather than the true angular velocity and body frame accel-
eration leads to the continuous-time IMU kinematics given by

Ċab = Cab (ugb − bgb − wg
b)
× , (6)

v̇zw/aa = Cab (uab − bab − wa
b ) + ga, (7)

ṙzwa = vzw/aa , (8)

ḃgb = wbg
b , (9)

ḃab = wba
b . (10)

Placing the attitude, velocity and position into an element of the matrix Lie group SE2(3) allows
for a more compact representation of the above continuous-time IMU kinematics. The IMU navi-
gation state can be placed into an element of SE2(3) as

Tab =

Cab vzw/aa rzwa
0 1 0
0 0 1

 ∈ SE2(3), (11)

Dropping the subscripts on Tab for brevity, the identical continuous-time kinematics can be written
in a more compact form as

Ṫ = GT + T (U− B) , (12)

ḃb = wb
b, (13)

G =

0 g 0
0 0 −1
0 0 0

 , U =

ug
×

b uab 0
0 0 1
0 0 0

 (14)

B =

bg
×

b bab 0
0 0 0
0 0 0

 (15)

Note that here, the matrix G is always constant, the matrix U is a function of the IMU measure-
ments, and the matrix B is a function of the IMU biases.

1.3 Discrete-Time IMU Kinematics
Implementing estimation algorithms involving an IMU requires a discretization of the continuous-
time IMU kinematics. Several discretization schemes are possible, corresponding to different hy-
potheses on the robot motion between integration times. Some examples of common assumptions
include
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• The acceleration in the inertial frame, azw/a/aa is roughly constant over the interval t ∈ [i, j]).
This is the most common assumption used and can be found in, for example, [1], but is an
assumption that is often be violated in practice. Nonetheless, a high enough IMU frequency
can make this assumption reasonable.

• The IMU measurements ugb and uab are constant over the integration interval. This dis-
cretization strategy can be found in [2], and lead to exact closed form expressions for the
continuous-time kinematics.

• The true local acceleration azw/a/ab is constant over the integration interval. The details of
this assumption is presented in [3].

The subsequent section will explore the first two discretization schemes - constant inertial acceler-
ation and constant IMU measurements.

1.3.1 IMU Discretization - Constant Inertial Acceleration

Denote the IMU attitude, velocity, and position at time t = tk as Ck = Cabk , vk = vzkwa , and
rk = rzkwa . Under the assumption of constant inertial acceleration between two times, t = tk−1 and
t = tk, the IMU kinematics can be discretized as

Ck = Ck−1 Exp
((

ugk−1 − bgk−1 − wg
k−1
)

∆t
)

(16)

vk = vk−1 + Ck−1
(
uak−1 − bak−1 − wa

k−1
)

∆t+ ga∆t (17)

rk =rk−1 + vk−1∆t+
1

2

(
Ck−1

(
ugk−1 − bgk−1 − wg

k−1
)

+ ga
)

∆t2, (18)

where ∆t = tk− tk−1 is the time step between IMU measurements. This is the simplest discretiza-
tion possible and

1.3.2 IMU Kinematics Discretization - Constant IMU Measurements

Rather than assume that the acceleration azw/a/aa is constant, we can instead assume that the mea-
surements ug and ua are constant and applying a zero-order hold on these measurements. Here,
the use of the compact IMU kinematics, written as Ṫ = GT + T (U− B) makes this derivation
significantly easier.

Assuming that the measurements are constant over the integration interval is equivalent to assum-
ing that U is constant between a small integration interval ∆t. With this assumption, the solution
to this ODE with initial condition Tk−1 is given by

Tk = exp (∆tG) Tk−1 (∆tU) (19)
= Gk−1Tk−1Uk−1, (20)

where the matrices Gk−1 and Uk−1 are computed in closed form by a direct series expansion of the
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matrix exponential and are given by

Gk−1 =

1 ∆tga − (∆t2/2) ga
0 1 −∆t
0 0 1

 (21)

Uk−1 =

exp
(
∆tω∧k−1

)
∆tJ` (∆tω) ak−1 (∆t2/2) N (∆tωk−1) ak−1

0 1 ∆t
0 0 1

 , (22)

where here, ωk−1 = ugk−1 − bgk−1 − wg
k−1 and ak−1 = uak−1 − bak−1 − wa

k−1, and additionally, the
expression N (·) is given by

N (φ) = aaT + 2

(
1

φ
− sinφ

φ2

)
a× + 2

cosφ− 1

φ2
a×a×, (23)

where a = φ/ ‖φ‖ and φ = ‖φ‖.

Note that additionally, Uk−1 is not an element of SE2(3). However, it can be decomposed into a
product of an element of SE2(3) and another matrix, written as

Uk−1 =

1 0 0
0 1 ∆t
0 0 1


︸ ︷︷ ︸

∆

exp (∆tω∧) ∆tJ` (∆tω) a (∆t2/2) N (∆tω) a
0 1 0
0 0 1


︸ ︷︷ ︸

Unav
k−1

, (24)

where Uk−1 is an element of SE2(3). Note that these discrete-time kinematics match those found
in [2, p.101], but the use of the compact form makes the derivation simpler.

1.4 State, Noise, and Error Definitions
The state for estimation in inertial navigation problems is typically the IMU orientation, velocity,
and position, collectively refered to as the navigation state, as well as the IMU biases. Stacking
the IMU biases as

bb =

[
bgb
bab

]
∈ R6, (25)

and placing the IMU attitude, velocity, and position into an element of SE2(3) denoted Tab, the
full IMU state is then defined as

X = (Tab,bb) ∈ SE2(3)× R6. (26)

This is a composite Lie group, where the group composition operation can be defined as

X1 ◦ X2 = (Tab1Tab2 ,bb1 + bb2) . (27)

All other important operations are defined analogously, where each individual operation acts sep-
arately on the IMU navigation state and the IMU biases.
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This definition of the IMU state allows for the definition of the ⊕ operator given by

X ⊕ δξ =
(
Tab ⊕ δξnav,bb + δξb

)
, (28)

δξ =

[
δξnav

δξb

]
∈ R15, (29)

where δξnav ∈ R9 is the perturbation to the navigation state and δξb ∈ R6 is the perturbation to the
IMU biases. Both the left and right definitions of the ⊕ operator can be used in (28). Additionally,
the 	 operator for the state is defined analogoously as

X1 	X2 =

[
Tab1 	 Tab2

bb1 − bb2 ,

]
∈ R15, (30)

where a left or right definition of the 	 operator can be used for the navigation state.

Finally, the final definition needed before deriving linearized dynamics for the IMU process model
is the definition of the noises. The IMU white noises and random walk noises can be stacked to
define a noise matrix as

w =
[
wgT

b waT

b wbTg
b wbTa

b

]T
∈ R12, (31)

with noise PSD matrix given by

Qc = diag
(
Qg
c ,Q

a
c ,Q

bg
c ,Q

ba
c

)
. (32)

With these state, noise, and error definitions, the continuous-time process model can now be lin-
earized.

1.5 Continuous-Time Process Model Linearization
The Jacobians of the IMU process model with the state are often needed for estimation (i.e., in an
EKF), or for analysis purposes (to perform an observability analysis, for example). This section
will outline the forms of the continuous-time process model Jacobians for both the left and right
perturbation of the IMU navigation state.

The continuous-time process model is written as

Ẋ (t) =
(
Ṫ(t), ḃ(t)

)
= f (X (t) ,u (t) ,w (t)) , (33)

where the function f (X (t) ,u(t),w(t)) can be written as(
Ṫ, ḃ

)
= (f1 (X (t),u(t), t) , f2 (X (t),u(t),w(t))) . (34)

The function f1 (X ,u,w) is the process model for the navigation state, and the function f2 (X ,u,w)
is the process model for the IMU biases, where these are written as

Ṫ = GT + TU, (35)

ḃ = wb. (36)
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Linearizing the process-model in continuous-time yields an equation of the form

δξ̇ ≈ Fδξ + Lδw, (37)

where F is the continuous-time Jacobian of the process model with respect to X , and L is the
continuous-time Jacobian of the process model with respect to the noise. Formally, these are
written as

Fc =
Df(X ,u,w)

DX
, (38)

Lc =
Df(X ,u,w)

Dw
, (39)

where the Lie group definition of a Jacobian is used. The exact expressions for the Jacobians Fc
and Lc depend on whether a left or right definition of the ⊕ operator is used. Starting with a right
definition of the ⊕ operator, these Jacobians are given as

Fc =


− (ug − bg)× 0 0 −1 0
− (ua − ba) − (ug − bg)× 0 0 −1

0 1 − (ug − bg)× 0 0
0 0 0 0 0
0 0 0 0 0

 , Lc =


1 0 0 0
0 1 0 0
0 0 0 0
0 0 1 0
0 0 0 1

 . (40)

For a left definition of the ⊕ operator, the continuous-time process model Jacobians are given by

Fc =


0 0 0 −Cab 0

g× 0 0 −vzw/a
×

a Cab −Cab

0 1 0 −rzw×
a Cab 0

0 0 0 0 0
0 0 0 0 0

 , Lc =


Cab 0 0 0

vzw/a
×

a Cab Cab 0 0
rzw×
a Cab 0 Cab 0

0 0 1 0
0 0 0 1

 . (41)

Note that the continuous-time matrix Fc depends on the input and biases for a right perturbation
definition, whereas it depends on the navigation state for the left perturbation definition. The full
derivations for these Jacobians can be found in Appendix A.

To implement a state estimation algorithm like an EKF, the continuous-time linear dynamics can
be discretized using any method of choice, to yield the discrete-time linear system given by

δξk ≈ Fk−1δξk−1 + δwk−1, (42)

where δwk−1 ∼ N (0,Qk−1).
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A Continuous-Time IMU Kinematics Jacobian Derivations
In this section, the Jacobians of the continuous-time IMU kinematics will be derived for both a left
and right perturbation of the navigation state. Neglecting subscripts from brevity, recall that the
continuous-time IMU kinematics are given by

Ċ = C (ug − bg − wg) , (43)
v̇ = C (ua − ba − wa) + g, (44)
ṙ = v, (45)

ḃg = wb, (46)

ḃa = wa. (47)

The next sections will derive the error dynamics of this continuous-time process model for both a
left and right perturbation of the state.

A.1 Left Perturbation Derivation
To start, consider the state definition X = (T,b) ∈ SE2(3)× R6, and the perturbation given by

X = X̄ ⊕ δξ =
(
T̄⊕ δξnav, b̄ + δξb

)
. (48)

Expanding the navigation state perturbation yields

T = Exp (δξnav) T̄, (49)C v r
0 1 0
0 0 1

 =

δC δv δr
0 1 0
0 0 1

C̄ v̄ r̄
0 1 0
0 0 1

 , (50)

=

δCC̄ δCv̄ + δv δCr̄ + δr
0 1 0
0 0 1

 . (51)

Rearranging yields the individual error definitions for the navigation state as

δC = CC̄T, (52)
δv = v− δCv̄, (53)
δr = r− δCr̄. (54)

The error dynamics of the continuous-time IMU kinematics can now be derived by taking the time
derivative of the error definitions. Starting with the attitude yields

δĊ = ĊC̄T + C ˙̄CT (55)

= C (ug − bg − wg)× C̄T − C
(
ug − b̄g

)× C̄T, (56)

= C
(
−bg + b̄g − wg

)× C̄T, (57)

= δCC̄ (−δbg − wg)× C̄T, (58)

= δC
(
C̄ (−δbg − wg)

)× (59)
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Linearizing by letting δC ≈ 1 + δξφ
× and neglecting products of small terms yields

δξ̇φ
× ≈

(
1 + δξφ

×
) (

C̄
(
−δξbg − wg

))×
(60)

≈ −C̄δξbg − C̄δwg. (61)

Next, consider the velocity error dynamics given by

δv̇ = v̇− δĊv̄− δC ˙̄v (62)

= C (ua − ba − wa) + g− δĊv̄− δC
(
C̄
(
ua − b̄a

)
+ g
)

(63)

= δCC̄
(
ua − b̄a − δba − wa

)
+ g− δĊv̄− δC

(
C̄
(
ua − b̄a

)
+ g
)
, (64)

= δCC̄ (δba − wa) + g− δĊv̄− δCga. (65)

Linearizing by letting δC ≈ 1 + δξφ
× , and δv ≈ δξv, and δĊ ≈

(
−C̄δξbg − C̄δwg

)× yields

δξ̇v ≈
(

1 + δξφ
×
)

C̄
(
−δξba − δwa

)
+ g−

(
−C̄δξbg − C̄δwg

)× v̄−
(

1 + δξφ
×
)

g, (66)

= −C̄δξba − C̄δwa − v̄×C̄δξbg − v̄×C̄δwg + g×δξφ. (67)

Next, consider error dynamics δṙ given by

δṙ = ṙ− δĊr̄− δC ˙̄r, (68)

= v− δĊr̄− δCv̄, (69)

= δCv̄ + δv− δĊr̄− δCv̄ (70)

= δv− δĊr̄ (71)

Linearizing by letting δC ≈ 1 + δξφ
× , δv ≈ δξv, and δĊ ≈

(
−C̄δξbg − C̄δwg

)× yields

δξ̇r ≈ δξv −
(
−C̄δξbg − C̄δwg

)× r̄, (72)

= δξv − r̄×C̄δξbg − r̄×C̄δwg. (73)

Finally, linearizing the bias error dynamics is given by

δḃ = ḃ− ˙̄b = w, (74)

δḃ ≈ δw. (75)

Hence, the continous-time process model Jacobians for a left perturbation of the navigation state
is given by

F =


0 0 0 −C̄ 0

g× 0 0 −v̄×C̄ −C̄
0 1 0 −r̄×C̄ 0
0 0 0 0 0
0 0 0 0 0

 , (76)

L =


C̄ 0 0 0

v̄×C̄ C̄ 0 0
r̄×C̄ 0 0̄ 0

0 0 1 0
0 0 0 1

 (77)
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A.2 Right Perturbation
Next, the same state definition X = (T,b) ∈ SE2(3)×R6 will be considered, but the perturbation
on the navigation state will be a right perturbation given by

T = T̄ Exp (δξnav) , (78)C v r
0 1 0
0 0 1

 =

C̄ v̄ r̄
0 1 0
0 0 1

δC δv δr
0 1 0
0 0 1

 (79)

=

C̄δC C̄δv + v̄ C̄δr + r̄
0 1 0
0 0 1

 . (80)

This leads to the individual error definitions given by

δC = C̄TC, (81)

δv = C̄T (v− v̄) , (82)

δr = C̄T (r− r̄) . (83)

Starting with the attitude error dynamics yields

δĊ = ˙̄CTC + C̄TĊ (84)

= −
(
ug − b̄g

)× C̄TC + C̄TC (ug − bg − wg)× , (85)

= −
(
ug − b̄g

)×
δC + δC

(
ug − b̄g − δbg − wg

)×
. (86)

Linearizing by letting δC ≈ 1 + δξφ
× and δbg ≈ δξbg yields

δξ̇φ
× ≈ −

(
ug − b̄g

)× (1 + δξφ
×
)

+
(

1 + δξφ
×
) (

ug − b̄g − δξbg − δwg
)×
, (87)

δξ̇φ ≈ −
(
ug − b̄g

)×
δξφ

× − δξbg − δwg. (88)

Next, consider the error dynamics δv̇ given by

δv̇ = ĊT (v− v̄) + C̄T
(
v̇− ˙̄v

)
. (89)

Subbing in the appropriate perturbations and linearizing yields

δξv ≈ −
(
ua − b̄a

)×
δξφ − (ug − bg)× δξv − δξba − δwa. (90)

Next, consider the error dynamics δṙ given by

δṙ = ˙̄CT (r− r̄) + C̄T
(
ṙ− ˙̄r

)
, (91)

= −
(
ug − b̄g

)×
δr + δv (92)

≈ −
(
ug − b̄g

)×
δξr + δξv. (93)
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The bias error dynamics are identical to the previous derivation. All together, utilizing a right
perturbation for the navigation state yields the continuous-time Jacobians given by

Fc =


− (ug − bg)× 0 0 −1 0
− (ua − ba) − (ug − bg)× 0 0 −1

0 1 − (ug − bg)× 0 0
0 0 0 0 0
0 0 0 0 0

 , Lc =


1 0 0 0
0 1 0 0
0 0 0 0
0 0 1 0
0 0 0 1

 .
(94)

A.3 Discrete-Time State Transition Matrix
This section will derive the discrete-time state transition matrix Φ̇k,1, specifically for a left per-
turbation of the state. Recall that the state transition matrix Φk,1 satisfies the following matrix
differential equation [4]

Φ̇k,1 = Fc (t)Φk,1, Φ1,1 = 1, (95)

where utilizing a left perturbation of the navigation state, Fc has the following structure.

Fc(t) =


0 0 0 −C 0

g× 0 0 −v×C −C
0 1 0 −r×C 0
0 0 0 0 0
0 0 0 0 0

 , (96)

(97)

where C(t), v(t) and r(t) are nominal time-varying values for the attitude, velocity, and position.
Examining the block elements of Φ̇k,1 allows us to determine an analytical solution for the state
transition matrix. Consider the multiplication given by

Φ̇k,1 =


0 0 0 −C 0
0 0 1 −r×C 0

g× 0 0 −v×C −C
0 0 0 0 0
0 0 0 0 0



Φ11
k,1 Φ12

k,1 Φ13
k,1 Φ14

k,1 Φ15
k,1

Φ21
k,1 Φ22

k,1 Φ23
k,1 Φ24

k,1 Φ25
k,1

Φ31
k,1 Φ32

k,1 Φ33
k,1 Φ34

k,1 Φ35
k,1

Φ41
k,1 Φ42

k,1 Φ43
k,1 Φ44

k,1 Φ45
k,1

Φ51
k,1 Φ52

k,1 Φ53
k,1 Φ54

k,1 Φ55
k,1

 (98)

Since the last two rows of the process model Jacobian are zero,

Φ̇i?
k,1 = 0, i = 4, 5. (99)

Utilizing the initial condition Φk,1 = 1, Φi,i
k,1 = 1 if i = 4, 5 and 0 otherwise. Thus, the state

transition matrix can now be written as

Φ̇k,1 =


0 0 0 −C 0
0 0 1 −r×C 0

g× 0 0 −v×C −C
0 0 0 0 0
0 0 0 0 0



Φ11
k,1 Φ12

k,1 Φ13
k,1 Φ14

k,1 Φ15
k,1

Φ21
k,1 Φ22

k,1 Φ23
k,1 Φ24

k,1 Φ25
k,1

Φ31
k,1 Φ32

k,1 Φ33
k,1 Φ34

k,1 Φ35
k,1

0 0 0 1 0
0 0 0 0 1

 (100)
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Following a similar approach, expanding the first block row of the state transition matrix yields

Φ̇11
k,1 = 0, (101)

Φ̇14
k,1 = −C, (102)

Utilizing the initial condition Φ11
k,1 = 1, we have

Φ11
k,1 = 1, (103)

Φ14
k,1 = −

∫ tk

t1

C(τ)dτ. (104)

Next, consider expanding the expressions for the second block row of the state transition matrix as

Φ̇21
k,1 = g×a , (105)

Φ̇22
k,1 = 0, (106)

Φ̇24
k,1 = g×aΦ

14
k,1 − v×C, (107)

Φ̇25
k,1 = −C. (108)

Integrating these from their initial conditions yields

Φ21
k,1 = ∆tg×a , (109)

Φ22
k,1 = 1, (110)

Φ24
k,1 = −

∫ tk

t1

(
v (τ)×C (τ)− g×a

∫ τ

t1

C(s)ds

)
dτ, (111)

Φ25
k,1 = −

∫ tk

t1

C(τ)dτ, (112)

where ∆t = tk − t1. Next, expanding the expressions for the third block row of the state transition
matrix yields

Φ̇31
k,1 = Φ21

k,1, (113)

Φ̇32
k,1 = Φ22

k,1, (114)

Φ̇33
k,1 = 0, (115)

Φ̇34
k,1 = Φ24

k,1 − r×C, (116)

Φ̇35
k,1 = Φ25

k,1. (117)
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Integrating these from their initial conditions yields

Φ31
k,1 =

1

2
g×a ∆t, (118)

Φ32
k,1 = ∆t1, (119)

Φ33
k,1 = 1, (120)

Φ34
k,1 = −

∫ tk

t1

(
r (θ)×C(θ)

)
(121)

+

[∫ θ

t1

(
v(τ)×C(τ) + g×a

∫ τ

t1

C(s)ds

)
dτ

]
dθ, (122)

Φ35
k,1 = −

∫ tk

t1

(∫ τ

t1

(C(s)ds)

)
dτ, (123)

(124)

In summary, putting all of these components together, the discrete-time state transition matrix has
the following structure.

Φk,1 =


1 0 0 Φ14

k,1 0 0
g×a ∆t 1 0 Φ24

k,1 Φ25
k,1 0

1
2
g×a ∆t2 1∆t 1 Φ34

k,1 Φ35
k,1 0

0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

 , (125)

with the following form of the blocks

Φ14
k,1 =

∫ tk

t1

C(τ)dτ (126)

Φ34
k,1 = −

∫ tk

t1

(
r (θ)×C(θ)

)
(127)

+

[∫ θ

t1

(
v(τ)×C(τ) + g×a

∫ τ

t1

C(s)ds

)
dτ

]
dθ, (128)

Φ35
k,1 = −

∫ tk

t1

(∫ τ

t1

(C(s)ds)

)
dτ, (129)

Φ24
k,1 = −

∫ tk

t1

(
v(τ)×C(τ) + g×a

∫ τ

t1

C(s)ds

)
dτ, (130)

Φ25
k,1 = Φ14 = −

∫ tk

t1

C(τ)dτ. (131)

This is consistent with the expressions for the discrete-time state transition matrix found in [5].
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