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1 Lie Group Basics
This document will serve as a summary of concepts from Lie groups and is based heavily off the
Micro Lie Theory paper [1], with a few addition derivations and summaries.

A Lie group both encompasses the definitions of group and manifold. A Lie group G is a smooth
manifold whose elements satisfy the group axioms. A differentiable or smooth manifold is a topo-
logical space that is locally Euclidean. In robotics, it is common to say that our state evolves on
this surface, meaning that the manifold defines the constraints that are imposed on the state. The
smoothness of the manifold implies the existence of a unique tangent space at each point, which is
a linear or vector space on which we are allowed to do calculus.

Next, a group (G, ◦) is a set G with a composition operation, ◦, that for elements X ,Y ,Z ∈ G all
satisfy the following axioms,

Closure Under ◦ : X ◦ Y ∈ G, (1)
Identity E : E ◦ X = X ◦ E = X , (2)

Inverse : X ◦ X−1 = X−1 ◦ X = E , (3)
Associativity : (X ◦ Y) ◦ Z = X ◦ (Y ◦ Z). (4)

The group structure imposes that the composition of elements remains on the manifold, and that
each element also has an inverse on the manifold. A special one of these elements is the identity,
and thus, a special one of the tangent spaces is the tangent space at the identity element, which is
called the Lie algebra of the Lie group.

1.1 Group Actions
Lie groups come with the power to transform other elements of other sets. Given a Lie group G
and a set V , X · v is denoted the action of X ∈M on v ∈ V , given by

· : M × V → V, (X , v) 7→ X · v. (5)

For · to be a group action, it must satisfy the axioms

Identity : E · v = v, (6)
Compatibility : (X ◦ Y) · v = X · (Y · v) . (7)

1.2 Tangent Spaces and The Lie Algebra
Given X (t), a point moving on a Lie group’s manifold G, it’s velocity Ẋ = ∂X/∂t belongs to
the tangent space TXG. The smoothness of the manifold implies the existence of a unique tangent
space at each point. The structure of such tangent spaces is the same everywhere.

The tangent space at the identity element is called the Lie algebra, and is denoted

g , TEG. (8)
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Every Lie group has an associated Lie algebra. The Lie group is related to the group through the
following facts:

• The Lie algebra g is a vector space, and it can be identified with vectors in Rm, where m is
the number of degrees of freedom of the group G.

• The exponential map, exp : g→ G, exactly converts elements of the Lie algebra to elements
of the Lie group. The logarithmic map, defined log : G→ g, is the inverse operation.

• Vectors of the tangent space at X can be transformed to the tangent space at the identity E
through a linear transformation. This transformaion is called the adjoint.

Lie algebras can be defined locally to a tangent point, X , estabilishing local coordinates for TXM.
Elements of the Lie algebra are typically defined with a wedge, as v∧, for a velocity. The structure
of the Lie algebra by time differentiating the group contraint for the inverse. For multiplicative
groups, this yields the new constraint X−1Ẋ + Ẋ−1X = 0. This constraint applies to the elements
tangent at X .

1.3 The Cartesian Vector Space Rm

The elements τ often have non-trivial structures (skew-symmetric matrices, imaginary numbers,
pure quaternions, etc.) However, the key aspect is that they can be expressed as linear combina-
tions of some base elements Ei, where Ei are called the generators of m These are derivatives of
X aroudn the origin in the i′th direction. We can pass from Rm and g through two mutially in-
verse linear maps or isomorphisms. Recall that an isomorphism is a structure-preserving mapping
between two structures of the same type that can be reversed by an inverse mapping. These two
isomorphisms are commonly denoted hat and vee, written as

(·)∨ : g→ Rm, (9)

(·)∧ : Rm → g. (10)

Since g is isomorphic to Rm, we can instead just use vectors in Rm for our purposes, since they
can be stacked in larger state vectors and more importantly, they can be manipulated with linear
algebra. Because of this, it is often preferable to work with elements of Rm over workin with g,

1.4 The Exponential Map
The exponential map exp () allows for the exact transfer elements of the Lie algebra to the Lie
group, an operation known as retraction. The exponential map arises naturally, by considering the
time-derivatives of X ∈ G over the manifold, as follows. The structure for the elements of the Lie
algebra can be found by differentiating the group constraint, as

v∧ = X−1Ẋ = −Ẋ−1X . (11)

Isolating Ẋ yields

Ẋ = Xv∧. (12)
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For v(t) constant over time, this is an ordinary differential equation (ODE) whose solution is given
by

X (t) = X (0) exp (v∧t) . (13)

Since X (t) and X (0) are elements of the group, then exp (v∧t) mapes elements v∧t of the Lie
algebra to elements of the Lie group.

In order to provide a more generic definition of the exponential map, first, define the tangent
increment τ , vt ∈ Rm as velocity per time, so we have that τ∧ = v∧ ∈ g is a point in the Lie
algebra. The exponential and logarismic maps defined as exp : g→ G, and log : G → g, such that

X = exp (τ∧) , (14)
τ∧ = log (X ) . (15)

Closed forms of the exponential map in multiplicative groups are obtained by writin the absolute
convergent Taylor series,

exp (τ∧) = E + τ∧ +
1

2
τ∧

2

+
1

6
τ∧

3

+ . . . . (16)

To find closed form solutions, we take advantage of the properties of powers of τ∧, and invert them
to find expressions for the logarithmic map. Some key properties fo the exponential map are

exp ((t+ s)τ∧) = exp (tτ∧) exp (sτ∧) , (17)

exp (tτ∧) = exp (τ )t , (18)

exp (−τ∧) = exp (τ )−1 , (19)

exp
(
Xτ∧X−1

)
= X exp (τ∧)X−1. (20)

The last identity can be derived by expanding the Taylor series and simplifing the many terms
X−1X .

1.5 The Exp (·), Log (·), ⊕, and 	 operations
The capital Exp (·) and Log (·) maps are convenient shorcuts to map vector elements to group
elements and vice versa. These are defined as Exp : g→ G and Log : G→ g, such that

X = exp (τ∧) , Exp (τ ) , (21)

τ = log (X ) , Log (X ) . (22)

The general ⊕ and 	 operators allows us to introduce increments between elements of a curved
manifold, and express them in its flat tangent vector space. Denoted by ⊕ and 	, they combine
one Exp /Log operation with one composition. They have two possible definitions - left or right.
These are given by

Y = X ⊕ τ , Exp (τ ) ◦ X , (Lie group left), (23)

Y = X ⊕ τ , X ◦ Exp (τ ) , (Lie group right), (24)
(25)
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For subtraction, the left and right-minus operations are corresponding defined as

Y 	 X , Log
(
Y ◦ X−1

)
, (Lie group left), (26)

Y 	 X , Log
(
X−1 ◦ Y

)
, (Lie group right). (27)

Note that these are simply obtained by rearranging the definitions of ⊕ for both the right and the
left cases.

In the right definition of the ⊕ operator, Exp (τ ) is applied to the right hand side of the composi-
tion, meaning tat τ belongs to the tangent space at X - it is often said that τ is expressed in the
local frame. In the left definition, Exp (τ ) occurs on the left and this is a perturbation at the tangent
space at the identity element. We say that this perturbation is expressed in the global frame.

For elements of matrix Lie groups, the ◦ operator is simply matrix multiplication, and hence, the
left and right definitions of the ⊕ operator are given by

Y = Exp (τ ) X, (28)
Y = X Exp (τ ) . (29)

These can be used, for example, to define uncertainty representations on Lie groups, either as

X = Exp(δξ)X̄, Matrix Lie group left, (30)
X = X̄ Exp(δξ), Matrix Lie group right. (31)

Note that this leads to the following error definitons corresponding to the left and right perturba-
tions:

δξ = X	 X̄ = Log
(
XX̄−1

)
, Matrix Lie group left, (32)

δξ = X	 X̄ = Log
(
X̄−1X

)
, Matrix Lie group right. (33)

1.6 The Adjoint and the Adjoint Matrix
Equating Y in the definition of both the left and right definitions of the ⊕ operations, we arrive at
Exp

(
τ E
)
◦ X = X Exp

(
τX
)
, which determines a relation between the local and global tangent

elements. This is then developed as

Exp
(
τ E
)

= X Exp
(
τX
)
X−1 = exp

(
Xτ∧X−1

)
, τ E = XτX∧X−1. (34)

The adjoint of G at X , denoted AdX : g→ g, is defined as

AdX (τ∧) , Xτ∧X−1. (35)

This means that τ E = AdX
(
τX
)
. This defines the adjoint action of the group on its own Lie alge-

bra. The adjoint has two interesting and easy to prove properties - it is linear, and homomorphism.
Since AdX is a linear map, we can find an equivalent matrix representation Ad (X ) that maps the
Cartesian tangent vectors as

τ E = Ad (X ) τX , (36)
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where Ad (X ) ∈ Rm×m is the adjoint matrix. By the definition of the adjoint,

Xτ∧X−1 = (Ad (X ) τ )∧ , (37)

exp
(
Xτ∧X−1

)
= exp

(
(Ad (X ) τ )∧

)
, (38)

X exp (τ∧)X−1 = exp
(
(Ad (X ) τ )∧

)
, (39)

which is a key identity involving the adjoint matrix.

1.7 Derivatives on Lie Groups
The Jacobians described here fulfill the chain rule, so that we can easily compute any Jacobian
from the partial Jacobian blocks of inversion, composition, exponentiation, and action. Beginning
with Jaobians on vector spaces, recall that for a multivariate function f : Rm → Rn, the Jacobian
matrix is defined as the n×m matrix stacking all partial derivatives:

J =
∂f (x)

∂x
=


∂f1
∂x1

· · · ∂f1
∂xm

...
...

∂fn
∂x1

· · · ∂fn
∂xm

 ∈ Rn×m. (40)

It is useful to define this matrix as J =
[
j1 . . . j

]
, where ji is the i′th column vector of the Jacobian.

This column matrix corresponds to

ji =
∂f (x)

∂xi
, lim

h→0

f (x + hei)− f (x)

h
, (41)

The numerator corresponds to the variation of f (x)when x is perturbed in the direction of ei. For
the sake of convenience, consider the compact form given by

J =
∂f (x)

∂x
= lim

h→0

f (x + he)− f (x)

h
, (42)

with h ∈ Rm, which aglutinates all columns to form the definition of the Jacobian.

1.7.0.1 Right Jacobians on Lie Groups Inspired by the standard definitions of the ⊕ and 	
operators, Jacobians of functions f : M → N which act on manifolds can be derived. Using the
right definitions of the⊕ and	 operators in place of + and−, the standard derivative is formed as

Df (X )

DX
, lim

τ→0

f (X ⊕ τ )	 f (X )

τ
, (43)

=
∂ Log

(
f (X )−1 ◦ f (X ◦ Exp (τ ))

)
∂

τ . (44)

Note that this is actually just the standard derivative of the rather complex function g (τ ) =
Log

(
f (X )−1 ◦ f (Exp (τ ) ◦ X )

)
. With the ⊕ and 	, the intuition becomes much clearer - this

is the Jacobian of f (X ) with respect to X , only we’ve expressed the infintesimal variations in
the tangent spaces. Now, variations in X and f(X ) are expressed as vectors in their local tangent
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spaces, i.e., tangent respectively at X ∈ M and f (X ) ∈ N . This derivative is a JAcobian ma-
trix ∈ Rn×m mapping the local tangent spaces. For small values of τ , the following first order
approximation holds.

f (X ⊕ τ ) ≈ f (X )⊕ Df (X )

DX
τ . (45)

1.7.0.2 Left Jacobians on Lie Groups Derivates can also be defined utilizing the left defini-
tions of the ⊕ and 	 operators, which yields

Df (X )

DX
, lim

τ→0

f (X ⊕ τ )	 f (X )

τ
, (46)

=
∂ Log

(
f (Exp (τ ) ◦ X ) ◦ f (X )−1)

∂τ
. (47)

Now, note that the left Jacobian is a matrix mapping variations in the global tangent spaces. For
small values of τ , (45) still holds, but now the left definition of⊕ must be used instead of the right
definition of ⊕.

1.8 Uncertainty on Manifolds and Covariance Propagation
Local perturbations about a point X̄ ∈ M can be defined using using the right ⊕ and 	 operator
as

X = X̄ ⊕ τ , τ = X 	 X̄ ∈ TX̄M. (48)

Covariances can be properly defined on this tangent space through the standard expectation oper-
ator E [·], written as

ΣX , E[ττT] = E[
(
X 	 X̄

) (
X 	 X̄

)T
] ∈ Rm×m., (49)

This allows us to define Gaussian variables on manifolds. Note that the covariance is actually that
of the tangent perturbation τ By using a left definition of the ⊕ and 	 operator, we can also define
perturbations in the global reference (meaning the tangent space at the origin), as

X = Exp (τ ) τ , τ = X 	 X̄ . (50)

This allows for global specification of covariance matrices using the definition of the left-minus.
Since global and local perturbations are related by the adjoint, their covariance can be tranformed
with

ΣEX = AdXΣXXAdT
X . (51)

Covariance propagation through a function Y = f (X ) requires the linearization to yield the fol-
lowing formula

ΣY ≈
Df

DX
ΣX

Df

DX

T

. (52)
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1.9 Differentiation Rules on Manifolds
For all the typical manifolds G that we use, closed form solutions for the elementary Jacobians
of inversion, composition, exponentiation, and action can be defined. The Jacobians will first be
developed using right-Jacobians, using the Jacobian definition given by (43). Also, recall that the
left and right Jacobians are related through the adjoint, written as

EDf (X )

DX
= Adf(X )

XDf (X )

DX
Ad−1
X . (53)

Note that the notation used here will also reflect

Jf(X )
X ,=

Df (X )

DX
, JYX ,

DY
DX

. (54)

1.9.1 The Chain Rule

Letting Y = f(X ) and Z = g(Y), we have that Z = g (f (X )). The chain rule states

DZ
DX

=
DZ
DY

DY
DX

= JZYJYX . (55)

1.9.2 Inverse

Start by defining

JX−1

X ,
DX−1

DX
, (56)

Taking the derivative of this function using the right definition of the Jacobian yields

JX−1

X = lim
τ→0

=
Log

(
X (X Exp (τ ))−1)

τ
(57)

= lim
τ→0

Log (X Exp (−τ )X−1)

τ
. (58)

Next, utiliing the property exp (Xτ∧X−1) = X exp (τ∧)X−1, this is written as

lim
τ→0

=
(−Xτ∧X−1)

∧

τ
= −AdX . (59)

Next, taking the derivative of this function using the left definition of the Jacobian yields

JX−1

X = lim
τ→0

Log (X−1 Exp (−τ )X )

τ
, (60)

= −AdX−1 . (61)

This can also be confirmed by the relationship between derivatives as stated in (53) - plugging in
the right Jacobian yields

EDf(X )

DX
= Adf(X ). (62)
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1.9.3 Composition

Define the following Jacobians

JX◦YX ,
XDX ◦ Y
DX

, JX◦YY ,
YDX ◦ Y
DY

. (63)

Starting with a right definition of the Lie Jacobian, we arrive at

JX◦YX = lim
τ→0

Log
(
(XY)−1X Exp (τ )Y

)
τ

, (64)

= lim
τ→0

Log (Y−1 Exp (−τ )Y)

τ
, (65)

= AdY−1 . (66)

And for the Jacobian JXYY ,

JXYY = 1. (67)

Utilizing a left definition of the Jacobian yields

JX◦YX = lim
τ→0

=
Log (Exp(τ )XYY−1X−1)

τ
= 1. (68)

and for JXYY ,

JXYY =
∂ Log

(
(X Exp (τ )Y) (XY)−1)

∂τ
(69)

=
∂ Log (X Exp (τ )X−1)

∂τ
. (70)

= AdX . (71)

1.9.4 Group Jacobians

The right Jacobian of G is defined as the right Jacobian of the function

Jr (τ ) =
DExp (τ )

Dτ
. (72)

The right Jacobian maps variations of the argument τ into variations in the local tangent space at
Exp (τ ). The actual definition of this Jacobian is given by

Jr (τ ) , lim
τ→0

Log
(
Exp (τ )−1 Exp (τ + δτ )

)
δτ

(73)

Jr (τ ) =
∂ Log

(
Exp (τ )−1 Exp (τ + δτ )

)
∂δτ

. (74)
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Note that this is actually just a regular vectorspace Jacobian and can be computed numerically! Inu-
titively, the right Jacobian measurements how the difference between Exp (τ ) andExp (τ + δτ ),
mapped back to Rm, change with δτ .

For small variations of τ , we can use the first order approximation of f (τ ) = Exp (τ ) to write

Exp (τ + δτ ) ≈ Exp (τ ) Exp (Jr (τ ) δτ ) . (75)

Defining a new quantity δτ ′ = Jr (τ )−1 δτ , and performing the same operations yields

Exp (τ + δτ ′) ≈ Exp (τ ) Exp (Jr (τ ) δτ ′) , (76)

Exp
(
τ + Jr (τ )−1 δτ

)
= Exp (τ ) Exp (δτ ) , (77)

Log (Exp (τ ) Exp (δτ )) ≈ τ + Jr (τ )−1 δτ . (78)

Similarly, the left Jacobian of G is defined as the left Jacobian of the function X = Exp (τ ) and is
defined as

Jl (τ ) =
DExp (τ )

Dτ
. (79)

By plugging in this function X = Exp(τ ) into the generic definition for the left Jacobian, the
definition of the left Jacobian is given by

Jl (τ ) =
∂ Log

(
Exp (τ + δτ )Exp (τ )−1)

∂δτ
. (80)

This leads to similar approximations for small δτ that involve the left Jacobian, as

Exp (τ + δτ ) ≈ Exp (Jl (τ ) δτ ) Exp (τ ) . (81)

Equationg the two derived expressions for Exp (τ + δτ ) yields

Exp (Jl (τ) δτ ) Exp (τ ) = Exp (τ ) Exp (Jr (τ ) δτ ′) (82)
Exp (Jl (τ) δτ ) = X Exp (Jr (τ ) δτ )X−1 (83)

= Exp
(
XJr (τ ) δτX−1

)
, (84)

Jl (τ ) δτ = XJr (τ ) δτX−1, (85)

and hence, the left and right Jacobians are related through the adjoint as

Jl (τ ) δτ = AdXJr (τ ) δτ , (86)
AdX = Jl (τ ) J−1

r (τ ) . (87)

The chain rule also allows to to relate Jr and Jl, and the relationship between these is

Jr (τ ) = Jl (−τ ) . (88)
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1.9.5 Logarithmic Map

For τ = Log (X ), and for the definition of the right Jacobian, from (78),

JLog(X )
X = J−1

r (τ ) . (89)

For the same function τ = Log (X ) but this time using the definition of the left Jacobian, we get

JLog(X )
X = J−1

l (τ ) . (90)

1.9.6 ⊕ Operator

For the ⊕ operations, there are two Jacobians to be solved for: JX⊕τX and JX⊕ττ .

Starting with the right definition of ⊕, and defining f (X ) = X Exp (τ ),

JX⊕τX = JX◦Exp(τ )
X = Ad−1

Exp(τ ), (91)

using the result of the Jacobian of the composition operation. To derive JX⊕ττ , defining Y =
Exp (τ ) we can use the chain rule to write

JX⊕ττ = JX◦YY JExp(τ )
τ = 1Jr = Jr (τ ) . (92)

The same can be repeated for the left definition of ⊕, and defining f (X ) = Exp (τ )X , these
Jacobians are derived as

JExp(τ )◦X
X = 1, (93)

again using the results of the composition Jacobian. Next, for JX⊕ττ , we have

JExp(τ )◦X
τ = JYXY JExp(τ )

τ = Jl, (94)

using the results from the composition Jacobian and the group Jacobian for the left definition of⊕.

1.9.7 	 Operator

For the definition of the 	 operator, consider the functions

Z = X−1Y , τ = Y 	 X = Log (Z) . (95)

Consider the output of the minus operation, given by

τ = Y 	 X . (96)

Starting with JY	XY , and utilizing a right-perturbation yields

τ + δτ = (Y ⊕ δy)	X , (97)

= Log
(
X−1Y Exp (δy)

)
(98)

= Log (Exp (τ ) Exp (δy)) (99)
≈ τ + J−1

r (τ ) δy, (100)
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and hence, JY	XY = J−1
r (τ ) for a right perturbation. For a left perturbation, similarly,

τ + δτ = Log
(
Exp (δy)YX−1

)
, (101)

= Log (Exp(δy) Exp(τ )) (102)
=≈ τ + J−1

l (τ ) δy. (103)

Next, to derive the Jacobian of JY	XX utilizing a right perturbation,

τ + δτ = Y 	 (X ⊕ δx) , (104)

= Log
(
(X Exp(δx))−1 Y

)
, (105)

= Log
(
Exp (−δx)X−1Y

)
, (106)

= Log (Exp(−δx) Exp(τ )) , (107)

≈ τ − Jl (τ )−1 δx, (108)

and hence, JY	XX = −Jl (τ )−1 utilizing the right perturbation.

Finally, deriving JY	XX using a left perturbation yields

τ + δτ = Y 	 (X ⊕ δx) , (109)

= Log
(
Y (Exp (δx)X )−1) , (110)

= Log
(
YX−1 Exp (−δx)

)
, (111)

= Log (Exp(τ ) Exp (−δx)) (112)

≈ τ − Jr (τ )−1 δx. (113)

1.10 Elementary Jacobians Summary
The following is a summary of the elementary Jacobians derived in the previous section.

Operation Right Perturbation Jacobians Left Perturbation Jacobians

JX⊕τX Ad−1
Exp(τ ) 1

JX⊕ττ Jr (τ ) Jl (τ )

JY	XX −Jl (τ )−1 −Jr (τ )−1

JY	XY J−1
r (τ ) J−1

l (τ )

Table 1: Jacobian expressions for elementary Lie group operations under right- and left-invariant
formulations.
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1.11 Baker-Cambell-Hausdorff Formula
One of the main tools used to manipulate expressions involving Lie groups is the Baker-Cambell-
Hausdorff (BCH) formula. Given a, b ∈ R, the following holds.

exp (a+ b) = exp(a) exp(b) (114)

Hwoever, with two matrices A,B ∈ g,

exp (A + B) 6= exp(A) exp(B). (115)

The BCH formula relates exp (A) and exp (B), as

Z , log (exp (A) exp (B)) ∈ g. (116)

The BCH formula can be expanded as

Z = log (exp (A) exp (B)) = A + B +
1

2
[A,B] +

1

12
[A, [A,B]] +

1

12
[B, [A,B]] + . . . , (117)

where the Lie bracket is defined as

[A,B] = AB− BA. (118)

When A is “small”, the BCH formula becomes

Z = b + J` (b)−1 a. (119)

When B is “small”, the BCH formula becomes

Z = a + Jr (a)−1 b. (120)

The previous results lead to approximations involving the left Jacobian, as

exp
(
(ξ + δξ)∧

)
≈ exp

(
(J` (ξ) δξ)∧

)
exp (ξ∧) , (121)

exp (δξ∧) exp (ξ∧) ≈ exp
((
ξ + J` (ξ)−1 δξ

)∧)
, (122)

log (exp (δξ∧) exp (ξ∧))
∧ ≈ ξ + J` (ξ)−1 δξ, (123)

where δξ is small.
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