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Simultaneous Localization and Mapping (SLAM)

Where am I?

What does the world look like?

Where should I go?

What SLAM answers…

What SLAM enables…

Sensors allow robots to localize and perceive the environment.

LiDAR

Cameras
Inertial measurement unit (IMU)

Radar

Visual-Inertial
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Visual-Inertial Navigation

Goal: Infer the robot state             and landmark position       given:
• inertial measurements               ,                
• visual feature measurements            
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What do we mean by features?

Features: distinctive visual information in the environment.
• Points, lines, planes, objects…

Points and lines extracted from image Objects extracted from image
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IMU Measurements

• IMUs consist of a rate gyro and an accelerometer and measure the acceleration and angular velocity of a 
vehicle, with additive bias and noise.

True angular velocity

True acceleration

Gyro:

Accelerometer:
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The IMU Kinematics

• The IMU state is the orientation, velocity and position of the IMU, and the IMU biases.

Continuous-Time Process Model

Discrete-Time Process Model
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Visual Feature Measurements

• Cameras model a mapping between the 3D world and a 2D image.

• Commonly modelled as central projection – project points in 3D space onto a plane called the image plane.

Image Plane

Normalized image coordinates of observation

Pinhole Camera Model
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Visual Feature Measurements

• We need to write our measurement model in terms of the states of interest.  

• This can be done using the camera/IMU extrinsic parameters.

Optical Axis
Image Plane

Full measurement model
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Visual-Inertial Navigation Approaches

Loosely-Coupled Fusion Tightly-Coupled Fusion

Step 1: Determine 
relative poses between 
images using two-view 
geometry.

Step 2: Fuse relative pose 
information with IMU (filters, sliding 
window filters, etc.)

Directly fuse camera and IMU data within a 
single process.

Higher accuracy, higher computational cost.

Computationally efficient!
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Tightly-Coupled Visual-Inertial Algorithms

Filtering-based Optimization-based Filtering-based

• Filtering-based algorithms use measurements a single time to estimate the state.

• Optimization-based algorithms perform iterative minimization over a window of states. 
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Classic EKF-SLAM

Landmark positionIMU state

• The IMU state is the orientation, velocity and position of the IMU, and the IMU biases.

• State covariance can then be partitioned as

• EKF state includes current IMU state and landmark 
positions.
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Classic EKF-SLAM – Prediction Step

• Reduced form of the typical EKF prediction step due to the structure of the problem.

• Landmarks are assumed constant! 

• The EKF covariance propagation has the form

• IMU process model and process model Jacobian are given by 

Updated parts of the covariance
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Classic EKF-SLAM – Correction Step

• The EKF correction step can also be modified to exploit sparsity.

• Each measurement links one IMU state to one landmark state.

• The computation of the innovation is sparse, but the Kalman gain is dense.

Measurement Model: 

Measurement Model Jacobian:

Entire state and covariance must be updated for each 
landmark observation! 

Complexity               per measurement.
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The Problem with EKF-SLAM

• The computational complexity of the EKF scales worst-case cubically with the number of landmarks.

• The EKF quickly becomes computationally intractable for large maps. 

• Possible remedies: 
• decouple the estimation problem into a series of smaller submaps [1], 
• utilize the Extended Information Filter [2].

• Is there a way to remove the landmarks from the state vector?

[1] J. Leonard and H. Feder, “Decoupled Stochastic Mapping,” IEEE Journal of Oceanic Engineering, vol. 26, no. 4, pp. 561–571, 2001

[2] S. Thrun, Y. Liu, D. Koller, A. Ng, Z. Ghahramani, and H. Durrant-Whyte, “Simultaneous Localization and Mapping with Sparse Extended Information Filters,” 
International Journal of Robotics Research, 2004
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The Multi-State Constraint Kalman Filter (MSCKF)

• Key idea: Express the constraint imposed by a static feature 
observed from multiple camera poses, without including the 
feature position in the state vector.

• The MSCKF state includes      IMU poses.

• The MSCKF is still an EKF-based estimator.
• Follows a predict-correct structure!

MSCKF State EKF State
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MSCKF Overview

• Step 1 – Prediction: Propagate the state forward using the IMU measurements.

• Step 2 – State Augmentation: At each new image, augment the state and covariance with a copy of the 
current IMU pose.

• Step 3 – Image Processing: Extract and match features on the image.

• Step 4 – Correction: when an update step is triggered, utilize all measurements of a given landmark to 
perform the EKF correction step and update the state. 
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MSCKF Overview – Prediction Step

• Similar propagation step to EKF-SLAM due to covariance partitioning!

• Current IMU state is propagated forward using process model,

• Covariance is propagated forwards as

IMU State Covariance:

IMU Clone Covariances:
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MSCKF Overview – State Augmentation

• When an image is received, augment the state and covariance with a copy of the current IMU pose. 

• This operation is called stochastic cloning.

• Augment state and covariance as 

New variable 

Current state

Cloning function
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MSCKF Overview – Image Processing

• Extract and match features on the image.

• Common techniques include utilizing optical flow, or descriptor matching. 

Images taken from
http://jevois.org/tutorials/ProgrammerInvFlowLK.html
https://faculty.cc.gatech.edu/~hays/compvision2018/proj2/

Optical flow finds apparent motion between images. Descriptor matching tries to find 
similar features in "descriptor" 

space. 

http://jevois.org/tutorials/ProgrammerInvFlowLK.html
http://jevois.org/tutorials/ProgrammerInvFlowLK.html
https://faculty.cc.gatech.edu/~hays/compvision2018/proj2/
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MSCKF Overview – Correction Step

• Step 4 – Correction: when an update step is triggered, utilize all measurements of a given feature to 
perform the EKF correction step and update the state. 

• First question: How do we utilize all measurements of a given feature to correct the MSCKF state?

• Second question: When do we trigger the correction step?
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MSCKF Overview – The Measurement Model

• Consider the measurements of a single feature,       , observed from a set of       robot poses.

• We want to be able to predict the measurements from the state estimates.

Set of robot poses: 

Observations:

Feature resolved in camera frame:

Inertial landmark position
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MSCKF Overview – Solving for the Landmark Position

• We need an we need an estimate of       !

• Conduct batch estimation to solve for an estimate of the landmark position as

• IMU poses are treated as known constants and are held fixed in the batch problem.

Predict measurement
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MSCKF Overview – The Measurement Model
• Measurement residual can now be computed using the estimated feature position as 

• Linearize residual:

• Stack all residuals of a single feature:

• Cannot directly use this in the EKF correction step…

Landmark JacobianPose Jacobian

Stack linearizations
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MSCKF Overview – MSCKF Nullspace Projection
• The MSCKF "secret sauce": project original residual onto the left nullspace of the feature Jacobian.

• Nullspace of the feature Jacobian is spanned by the columns of     ,

• SVD can be used to compute the left nullspace.

Original linearized residual:

New residual definition:

Take columns corresponding to 0 singular values
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MSCKF Overview – MSCKF Nullspace Projection
• New linearized residual is independent of the errors in the feature positions.

• We can now use this residual and linearization in an EKF update step!

• A constraint is defined between all the camera poses from which a given feature was observed. 
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MSCKF Overview – EKF Update Trigger
• Now we've showed how to express the constraint imposed by observing a landmark from multiple 

camera poses.

• An EKF updated using this constraint is triggered by one of two conditions:
1. Once a feature has lost tracking, all measurements of that feature are used in an EKF update.

2. Once a maximum allowable number of IMU poses (        ) in the state vector has been reached, 
remove a number of these camera poses and utilize all measurements from these selected poses.

Example: if 

Remove from state vector and utilize all measurements.
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MSCKF Overview – EKF Update Equations
• Consider a situation in which the constraints from     features, selected from the two previous criteria, 

must be processed.

• Compute the (projected) residual and linearization for each feature

• Stack all residuals and linearizations as

• Residual dimension can now be quite large – size of residual is given by 
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MSCKF Overview – EKF Update Equations
• QR decomposition saves the day (as usual).

• If the dimension of the residual is larger than the state dimension, decompose the full Jacobian as

• Project the residual onto this basis vectors of the range of      as

• This reduced residual and Jacobian can now be used in the EKF update!
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MSCKF Summary

• The computational complexity of the MSCKF is linear in the number of features, and at worst cubic in 
the number of poses that are included in the state vector.

• The MSCKF can be thought of as a hybrid between a sliding window filter and the standard EKF.
• Both maintain historical poses in the state vector.

• The MSCKF still only linearizes the measurement model a single time! 
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MSCKF Nullspace Projection Dimentions

• Matrix dimensions of involved quantities in nullspace projection:
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