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1 Preliminaries
This document contains derivations related to sensor models commonly used in robotic state es-
timation, especially in contexts related to SLAM. For each sensor model, Jacobians are derived
with respect to the state variables, a task that is often critical for the use of the sensors in state es-
timation algorithms. Many of the sensor models involve estimating states that live on Lie groups,
and two distinct options exist for deriving Jacobians on Lie groups. In this document, Jacobians
are presented for both the “left” and “right” perturbations of the state, allowing for the use of these
sensor models for both perturbation schemes.
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Some preliminaries related to Lie groups, based largely on [1], are briefly covered before exploring
common sensor models.

1.1 Lie Groups
A Lie group G is a smooth manifold that, given a group operation ◦ : G × G → G, satisfy the
group axioms. Given elements X ,Y ,Z ∈ G, the group axioms are given by

Closure Under ◦ : X ◦ Y ∈ G, (1)
Identity E : E ◦ X = X ◦ E = X , (2)

Inverse : X ◦ X−1 = X−1 ◦ X = E , (3)
Associativity : (X ◦ Y) ◦ Z = X ◦ (Y ◦ Z). (4)

For any Lie group, there exists an associated Lie algebra g, a vector space identifiable with elements
of Rm, where m is referred to as the degrees of freedom of G. The Lie algebra is related to the
group through the exponential and logarithmic maps, denoted exp : g → G and log : G → g.
The “vee” and “wedge” operators are denoted (·)∨ : g → Rm and (·)∧ : Rm → g, and are used to
associate group elements with vectors with

X = exp(ξ∧) , Exp(ξ), ξ = log(X )∨ , Log(X ), (5)

where X ∈ G, ξ ∈ Rm. Note that throughout this document, the shorthand notation Exp : Rm →
G and Log : G→ Rm will be used.

This document will also make use of the general⊕ and	 operations, allowing for the introduction
of increments to the curved manifold, expressed in its flat tangent vector space. The ⊕ and 	
operators combine one Exp (·)/ Log (·) operation with one composition operation. They have two
possible definitions, left or right. These are respectively given by

Y = X ⊕ τ , Exp (τ ) ◦ X , (Lie group left), (6)

Y = X ⊕ τ , X ◦ Exp (τ ) , (Lie group right), (7)

For subtraction, the left and right-minus operations are corresponding defined as

Y 	 X , Log
(
Y ◦ X−1

)
, (Lie group left), (8)

Y 	 X , Log
(
X−1 ◦ Y

)
, (Lie group right). (9)

Note that these are simply obtained by rearranging the definitions of ⊕ for both the right and the
left cases.

For elements of matrix Lie groups, the ◦ operator is simply matrix multiplication, and hence, the
left and right definitions of the ⊕ operator are given by

Y = Exp (τ ) X, (10)
Y = X Exp (τ ) , (11)
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where X,Y ∈ Rn×n are matrices satisfying the group axioms, and τ ∈ Rm is isomorphic to the
Lie algebra. These can be used, for example, to define uncertainty representations on Lie groups,
either as

X = Exp(δξ)X̄, Matrix Lie group left, (12)
X = X̄ Exp(δξ), Matrix Lie group right, (13)

where δξ ∈ Rm is a small perturbation. Rearranging leads to the error definitions used for elements
of a matrix Lie group, given by

δξ = X	 X̄ = Log
(
XX̄−1

)
, Matrix Lie group left, (14)

δξ = X	 X̄ = Log
(
X̄−1X

)
, Matrix Lie group right. (15)

1.2 Jacobians on Lie Groups
Following [1], the Jacobian of a function f : M → N with repsect to X can be derived. Using the
definitions of ⊕ and 	 previously introduced, the Jacobian of f with respect to X evaluated at X̄
is written as

Df(X )

DX

∣∣∣∣
X̄
,
∂f(X̄ ⊕ τ )	 f(X̄ )

∂τ

∣∣∣∣
τ=0

. (16)

Utilizing this definition of a derivative on a Lie group leads to the definition of the left and right
group Jacobians, which are defined as the Jacobians of the function f (τ ) = Exp (τ ). This is
written as

J (τ ) =
DExp (τ )

Dτ
, (17)

=
∂ Exp (τ̄ + τ )	 Exp (τ )

∂τ

∣∣∣∣
τ=0

, (18)

with the appropriate definition of the 	 operator. When a right definition of the 	 operator is
used, the resultant Jacobian is the right group Jacobian and is denoted Jr (τ ). The left Jacobian is
similarly denoted Jl (τ ), and utilizes a left definition of the 	 operator.

1.3 Common Lie Groups
This section briefly covers some common Lie groups found in robotic state estimation problems,
as well as some useful definitions related to these groups.

1.3.1 The Special Orthogonal Group SO(3)

One of the most common Lie groups encountered in robotics is SO(3), the set of three-dimentional
rotations. This group is defined as

SO(3) =
{

C ∈ R3×3 | CCT = 1, det (C) = +1
}
. (19)
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The Lie algebra associated with SO(3) is given by

so(3) =
{
φ× ∈ R3×3|φ ∈ R3

}
, (20)

where φ× is a skew-symmetrix matrix given by

φ× =

φ1

φ2

φ3

 =

 0 −φ3 φ2

φ3 0 −φ1

−φ2 φ1 0

 . (21)

The exponential map from so(3) to SO(3) is written in closed form as

Exp (φ) = cosφ1 + (1− cosφ) aaT + sinφa×, (22)

where a = φ/ ‖φ‖ and φ = ‖φ‖. The left Jacobian of SO(3) is given in closed form as

Jl (φ) =
sinφ

φ
1 +

1− cosφ

φ
a× +

(
1− sinφ

φ

)
aaT. (23)

1.3.2 The Special Euclidean Group SE(3)

The special Euclidean group is often used to represent poses (i.e., position and orientation), and is
defined as

SE(3) =

{
T =

[
C r
0 1

]
∈ R4×4

∣∣∣∣C ∈ SO(3), r ∈ R3

}
. (24)

The inverse of T is given by

T−1 =

[
CT −CTr
0 1

]
∈ SE(3). (25)

The Lie algebra associated with SE(3) is given by

se(3) =
{
Ξ = ξ∧ ∈ R4×4 | ξ ∈ R6

}
, (26)

ξ∧ =

[
ξφ

ξr

]
=

[
ξφ

×
ξr

0 0

]
∈ R4×4. (27)

The exponential map from se(3) to SE(3) is written as

Exp (ξ) =

[
Exp

(
ξφ
)

Jl
(
ξφ
)
ξr

0 1

]
, (28)

where Jl is the left Jacobian of SO(3).
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1.4 MAP Estimation and Nonlinear Least Squares
The maximum a posteriori (MAP) estimate is a point estimate that solves

X̂MAP = arg max
X

p (Y|X ) p (X )

p (Y)
, (29)

where p (Y|X ) is known as the likelihood probability density function (PDF), p (X ) is the prior
PDF, and p(Y) is the marginal PDF. Additionally, X = (X0, . . . ,XK) is a set of states to be
estimated, and Y = {Y0, . . .Yn} is a measurement set. Since p (Y) does not depend on X , it is
typically omitted to yield the equivalent optimization problem given by

X̂ = arg max
X

p (Y|X ) p (X ) (30)

= arg max
X

p (X0)
n∏
i=1

p (Yi|Xi) . (31)

Here, the measurement likelihood, p (Y|X ), is factored into a product of individual likelihoods,
p (Yi|Xi), for each measurement. Applying the negative log of this function which allows us to
write the problem as a minimization, as

X̂ = arg min
X

− log p (X0)−
n∑
i=1

log p (Yi|Xi) . (32)

Consider the situation when p (Yi|Xi) is Gaussian, such that p (Yi|Xi) ∼ N (µi,Σi). The form of
this Gaussian measurement likelihood is then given by

p (Yi|Xi) =
1√

(2π)ndet (Σi)
exp

(
−1

2
(ei (Xi,Yi)− µi)

TΣ−1
i (ei (Xi,Yi)− µi)

)
. (33)

Dropping the constant term, this negative log-likelihood is written as

X̂ = arg min
X

1

2

n∑
i=1

(ei (Xi,Yi)− µi)
T Σ−1

i (ei (Xi,Yi)− µi) . (34)

Typically, the errors considered are zero mean, and hence, the nonlinear least squares problem
becomes

X̂ = arg min
X

1

2

n∑
i=1

ei (Xi)T Σ−1
i ei (Xi) , (35)

where the dependence of each error term on a measurement Yi has been dropped. This is also
commonly written as

X̂ = arg min
X

1

2

n∑
i=1

‖ei (Xi)‖2
Σ−1

i
, (36)

where ‖ei (Xi)‖2
Σ−1

i
is the squared Mahalanobis distance.
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1.4.1 Solving Nonlinear Least Squares

Nonlinear least squares problems in the form of (36), rely on a linearization of the error terms
ei (X ) with respect to the state Xi. Formally, the individual error Jacobians are defined as

Hi =
Dei (Xi)
DXi

∣∣∣∣
Xi=X̄i

, (37)

where X̄i is the evaluation point of the Jacobian. Stacking all error terms

e (X ) =
[
e1 (X ) · · · en (X )

]
, (38)

the full error Jacobian can be written as

H =
De (X )

DX

∣∣∣∣
X=X̄

. (39)

Iterative nonlinear least squares methods such as Gauss-Newton or Levenberg-Marquardt, utilize
this error Jacobian to compute an update to the state variables. For example, Gauss-Newton com-
putes a step as

δx̂ =
(
HW−1H

)−1 HTWe, (40)

which is then used to update the state estimate as X̂ ← X̂ ⊕ δx̂. Note that in the update step,
a left-or-right defintion of the ⊕ operator may be used, as long as the same definition is used in
computing the error Jacobian in (39). As solving nonlinear least squares problems relies on the
Jacobian of the error terms, the form of the Jacobians for both a left and right perturbation will be
derived for common sensor models in the following section.

2 Sensor Models and Error Terms

2.1 Relative Pose Measurements
In many SLAM problems, it is assumed that a sensor directly measures relative poses. These
relative pose measurements could come, for example, from a visual odometry or LiDAR odome-
try pipeline. Relative pose measurements form the basis of the task of pose graph optimization,
where the task is to estimate the poses of a vehicle relative to a base frame, given relative pose
measurements between an arbitrary set of poses.

Denote robot poses at times t = ti and t = tj as Ti,Tj ∈ SE(3). The pose at time t = tk is of the
form

Tk =

[
Cabk rzkwa

0 1

]
, (41)

where Cabi ∈ SO(3) is the orientation of the robot at time ti with respect to the base frame Fa,
and rzwa is the robot position resolved in an arbitrary base reference frame. The true relative pose
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of the robot between times t = ti and t = tj is given by

Tij = T−1
i Tj (42)

=

[
CT
abi
−rziwbi

1 0

] [
Cabj rzjwa

0 1

]
(43)

=

[
Cbibj rzjzibi

0 1

]
. (44)

Noisy measurements of the relative pose are denoted T̃ij , are then assumed to be of the form

T̃ij = Tij ⊕ ηij, (45)

where ηij ∼ N (0,Σij) represents Gaussian noise with covariance Σij . Note that it is assumed that
the noise is modelled in the Lie algebra and is added to the true relative pose using either the “left”
or “right” definition of the ⊕ operator. For example, for a “left” defintion, the noise is modelled as

T̃ij = Exp (ηij) Tij, (46)

where Exp (·) : R6 → SE(3) is the exponential map of SE(3).

With these relative pose measurements, an error term in batch estimation can be formed as

eij (Ti,Tj) = T̃ij 	 Tij, (47)

= T̃ij 	
(
T−1
i Tj

)
. (48)

which takes the difference between the true relative pose and the measured relative pose.

To derive the Jacobians of this residual with respect to the state variables Ti and Tj , the chain rule
can be used to write

De(Ti,Tj)

DTk

=
De(Ti,Tj)

DTij

DTij

DTk

, k ∈ {i, j}, (49)

where the Lie group definition of the Jacobian is used, defined in (16). The first Jacobian in the
chain rule is simply the Jacobian of the 	 operator, while the second Jacobian is the Jacobian of
the function Tij = T−1

i Tj with respect to Ti or Tj .

The following sections will derive these individual Jacobians for both the “left” and “right” defini-
tions of the ⊕ and 	 operators.

2.1.1 Left Perturbation

In the expression for the error Jacobian (49), the first Jacobian is the Jacobian of the error with
respect to the relative pose, and is simply the Jacobian of the	 operator with respect to the second
argument. For a left perturbation, this Jacobian is given by JY	XX = −Jr(τ )−1. To derive the
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second Jacobian, perturn both Tij and Ti as

Exp
(
δξT
)

T̄ij =
(
Exp(δξi)T̄i

)−1 T̄j (50)
= T̄−1

i Exp(−δξi)T̄j (51)
= T̄−1

i Exp(−δξi)T̄iT̄−1
i T̄j (52)

= exp
(
−
(
Ad
(
T̄−1
i

)
δξi
)∧) T̄ij (53)

Exp
(
δξTij

)
= exp

(
−
(
Ad
(
T̄−1
i

)
δξi
)∧) (54)

δξTij = −Ad
(
T̄−1
i

)
δξi. (55)

Next, the Jacobian of the errorwith respect to Tj can be found in a similar manner as

De
DTj

=
De
DTij

DTij

DTj

. (56)

The first Jacobian is the same as before, and the second Jacobian can be found by perturbing both
sides as

Exp
(
δξTij

)
T̄ij = T̄−1

i Exp (δξj) T̄j (57)

= exp
((

Ad
(
T̄−1
i

)
δξj
)∧) T̄ij (58)

δξTij = Ad
(
T̄−1
i

)
δξj. (59)

Finally, we require the statistic on the noise on the residual, eij , given that the noise on the relative
pose measurement is Gaussian. The residual including the noise is written as

eij =
(
T̄ij ⊕ ηij

)
	 T̄ij. (60)

This is an instance of passing a Gaussian through a nonlinearity, and to determine the statistics on
the output, we can linearize this expression with respect to ηij as

Deij
Dηij

=
Deij
DT̃ij

DT̃ij

Dηij
. (61)

To solve for these two Jacobians, we require the Jacobians of the ⊕ and 	 operators, given by

JY	XY = J` (τ )−1 (62)

JX⊕ττ = J` (τ ) , (63)

and hence, this Jacobian is simply identity.

This can also be found by directly examining how the noise enters the error, as

eij = Log
((

Exp (ηij) T̄ij

)
T̄−1
ij

)
, (64)

where we see that eij ∼ N (0,Σij).
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2.1.2 Right Perturbation

For a “right” perturbation of the state, the error is defined as

eij = Log
(
T̃ij 	 Tij

)
(65)

= Log
((

T−1
ij T̃ij

))
(66)

= Log
((

T−1
i Tj

)−1 T̃ij
)
, (67)

= Log
(
T−1
j TiT̃ij

)
. (68)

The Jacobian of this residual with respect to the state variables can now be derived. The Jacobians
with respect to Ti are found as

De
DTi

=
De
DTij

DTij

DTi

. (69)

The first Jacobian is the Jacobian of the error with repsect to the relative pose, and is the Jacobian
of the 	 operator with respect to the second argument. For a right perturbation, this Jacobian is
given by JY	XX = −J` (τ )−1. To derive the second Jacobian, perturb both Tij and Ti as

T̄ij Exp
(
δξTij

)
=
(
T̄i Exp (δξi)

)−1 T̄j (70)
= Exp (−δξi) T̄−1

i T̄j (71)
= T̄ijT̄−1

ij Exp (−δξi) T̄ij, (72)

= T̄ij exp
(
−
(
Ad(T̄−1

ij )δξi
)∧) (73)

Exp
(
δξTij

)
= exp

(
−
(
Ad(T̄−1

ij )δξi
)∧)

, (74)

δξTij = −Ad
(
T̄ij

)
δξi. (75)

Next, the Jacobian of the error with respect to Tj can be found in a similar manner. Perturbing
both sides of the relative pose measuement yields

T̄ij Exp
(
δξTij

)
= T̄−1

i T̄j Exp (δξj) , (76)
= T̄ij Exp (δξj) (77)

δξTij = δξj. (78)

2.2 Relative Landmark Position Measurments
In many SLAM problems, it is assumed that a sensor directly measures a point landmark in 3D
space, but resolved in the frame of the sensor. Denote the global frame as Fa, the position of the
point landmark resolved in Fa as rpwa , and the position of the robot resolved in the global frame
as rzwa . Additionally, denote the robot body frame as Fb, as assume that the body frame coincides
with the sensor frame. The direction-cosine-matrix DCM relating the attitude of the robot frame
to the attitude of the global frame is denoted Cab ∈ SO(3). The robot attitude and position can be
Noisy measurements of the landmark resolved in the body frame are given by

yk = gk (Tab, vk) + vk = CT
ab (rpwa − rzwa ) + vk, (79)
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where vk ∼ N (0,Rk) is Gaussian noise. In SLAM, we are interested in estimating both the
position of the landmark, rpwa , in addition to the the pose of the robot, Tab in SE(3). Thus, the
Jacobians of the measurement model with respect to both the robot pose and the landmark are
required. These Jacobians are respectively written as

Dgk (Tab, rpwa )

DTab

,
Dgk (Tab, rpwa )

Drpwa
. (80)

To start, the Jacobian of the measurement model with respect to the pose will be derived for both
a left and a right perturbation of the state.

2.2.1 Left Perturbation Jacobians

To start, consider the perturbation scheme on the pose given by

Tab = Exp (δξ) T̄ab, (81)[
Cab rzwa
0 1

]
=

[
δC δr
0 1

] [
C̄ab r̄zwa
0 1

]
(82)

=

[
δCC̄ab δCr̄zwa + δr

0 1

]
, (83)

where δC = Exp
(
δξφ
)

and δr = Jlδξr. Neglecting subscripts, we thus have the following
individual perturbations for the robot state.

C = δCC̄, (84)
r = δCr̄ + δr. (85)

Perturbing both sides of the measurement model using this perturbation scheme yields

ḡk + δgk =
(
δCC̄

)T
(r̄pwa − δCr̄− δr) , (86)

= C̄TδCT (r̄pwa − δCr̄− δr) , (87)

= C̄T
(
δCTr̄pwa − r̄− δCTδr

)
. (88)

Linearizing by letting δC ≈ 1 + δξφ
× , and δr ≈ δξr, we have

ḡk + δgk ≈ C̄T
((

1− δξφ×
)

r̄pwa − r̄−
(

1− δξφ×
)
δξr
)
. (89)

Neglecting higher order terms and subtracting the nominal solution yields

δgk ≈ C̄T
(
−δξφ× r̄pwa − δξr

)
, (90)

= C̄Tr̄pw×

a δξφ − C̄Tδξr. (91)

Hence, the Jacobian of the measurement model with respect to the pose is given by

Dgk
DTab

=
[
C̄Tr̄pw×

a −C̄T
]
. (92)
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2.2.2 Right Perturbation Jacobians

For a right perturbation of the state, the perturbation scheme is given by

Tab = T̄ab Exp (δξ) , (93)[
Cab rzwa
0 1

]
=

[
C̄ab r̄zwa
0 1

] [
δC δr
0 1

]
(94)

=

[
C̄abδC C̄abδr + r̄zwa

0 1

]
(95)

Neglecting subscripts, the individual perturbations for the robot state are given by

C = C̄δC, (96)
r = C̄δr + r̄. (97)

Perturbing both sides of the measurement model using this perturbation scheme yields

ḡk + δgk =
(
C̄δC

)T (r̄pwa − C̄δr− r̄
)

(98)

= δCTC̄T
(
r̄pwa − C̄δr− r̄

)
(99)

= δCT
(
C̄Tr̄pwa − δr− C̄Tr̄

)
(100)

= δCT (ḡk − δr) (101)

≈
(

1− δξφ×
)

(ḡk − δξr) , (102)

δg ≈ ḡ×k δξ
φ − δξr, (103)

where ḡk = C̄T
ab (r̄pwa − r̄zwa ). Hence, the Jacobian of the measurement model with respect to the

pose utilizing a right perturbation scheme is given by

Dgk
DTab

=
[
ḡ×k −1

]
. (104)

2.2.3 Jacobian with Respect to the Landmark Position

Next, for SLAM problems, we typically require the Jacobian of the measurement model with
respect to the landmark position. This Jacobian can be found by perturbing the landmark position
as rpwa = r̄pwa + δrpwa , to yield

ḡk + δgk = C̄T (r̄pwa + δrpwa − r̄) , (105)

δgk = C̄Tδrpwa , (106)

and hence the Jacobian is given by

Dgk(Tab, rpwa )

Drpwa
= C̄T

ab. (107)
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